Study Guide # 2

- 1. Relative/local extrema; critical points (points where $\nabla f = \vec{0}$ or ∇f does not exist).
- **2.** 2^{nd} Derivatives Test: Suppose the 2^{nd} partials of f(x,y) are continuous in a disk with center (a,b) and $\nabla f(a,b) = \vec{\mathbf{0}}$. Let $D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yy} & f_{yx} \end{vmatrix}_{(a,b)}$.
 - (a) If D > 0 and $f_{xx}(a, b) > 0 \implies f(a, b)$ is a local minimum value.
 - (b) If D > 0 and $f_{xx}(a, b) < 0 \implies f(a, b)$ is a local maximum value.
 - (c) If $D < 0 \Longrightarrow f(a,b)$ is a not a local min or local max value. So (a,b) is a saddle point of f.

If D = 0 (or if $\nabla f(a, b)$ does not exist or f has more than 2 variables) the test gives no information and you need to do something else to determine if a relative extremum exists.

- 3. Absolute extrema; Max-Min Problems.
- **4.** Double integrals; Midpoint Rule for rectangle : $\iint_R f(x,y) dA \approx \sum_{i=1}^m \sum_{j=1}^n f(\overline{x_i}, \overline{y_j}) \Delta A;$
- **5.** Type I region $D: \left\{ \begin{array}{l} g_1(x) \leq y \leq g_2(x) \\ a \leq x \leq b \end{array} \right. ;$ Type II region $D: \left\{ \begin{array}{l} h_1(y) \leq x \leq h_2(y) \\ c \leq y \leq d \end{array} \right. ;$

iterated integrals over Type I and II regions: $\iint_D f(x,y) \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx \text{ and}$

 $\iint_D f(x,y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) dx dy, \text{ respectively; Reversing Order of Integration (regions that are both Type I and Type II); properties of double integrals.}$

- **6.** Integral inequalities: $mA \leq \iint_D f(x,y) dA \leq MA$, where A = area of D and $m \leq f(x,y) \leq M$ on D.
- **7.** Change of Variables Formula in Polar Coordinates: if $D: \begin{cases} h_1(\theta) \leq r \leq h_2(\theta) \\ \alpha \leq \theta \leq \beta \end{cases}$, then

$$\iint_D f(x,y) dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta.$$

- **8.** Applications of double integrals:
 - (a) Area of region D is $A(D) = \iint_{\mathbb{R}} dA$
 - (b) Volume of solid under graph of z = f(x, y), where $f(x, y) \ge 0$, is $V = \iint_D f(x, y) dA$
 - (c) Mass of D is $m = \iint_D \rho(x, y) dA$, where $\rho(x, y) = \text{density (per unit area)}$; sometimes write $m = \iint_{\mathbb{R}} dm$, where $dm = \rho(x, y) dA$.
 - (d) Moment about the x-axis $M_x = \iint_D y \, \rho(x,y) \, dA$; moment about the y-axis $M_y = \iint_D x \, \rho(x,y) \, dA$.
 - (e) Center of mass $(\overline{x}, \overline{y})$, where $\overline{x} = \frac{M_y}{m} = \frac{\iint_D x \, \rho(x, y) \, dA}{\iint_D \rho(x, y) \, dA}$, $\overline{y} = \frac{M_x}{m} = \frac{\iint_D y \, \rho(x, y) \, dA}{\iint_D \rho(x, y) \, dA}$

<u>Remark</u>: centroid = center of mass when density is constant (this is useful)

9. Elementary solids $E \subset \mathbb{R}^3$ of Type 1, Type 2, Type 3; triple integrals over solids E: $\iiint_E f(x,y,z) \, dV = \iint_D \int_{u(x,y)}^{v(x,y)} f(x,y,z) \, dz \, dA \text{ for } E = \{(x,y) \in D, \ u(x,y) \leq z \leq v(x,y)\};$ volume of solid E is $V(E) = \iiint_E dV$; applications of triple integrals, mass of a solid, moments about the coordinate planes M_{xy} , M_{xz} , M_{yz} , center of mass of a solid $(\overline{x}, \overline{y}, \overline{z})$.

Going from RC to CC use $x^2 + y^2 = r^2$ and $\tan \theta = \frac{y}{r}$ (make sure θ is in correct quadrant).

11. Spherical Coordinates (ρ, θ, ϕ) , where $0 \le \phi \le \pi$:

From SC to RC: $\begin{cases} x = (\rho \sin \phi) \cos \theta \\ y = (\rho \sin \phi) \sin \theta \\ z = \rho \cos \phi \end{cases}$

Going from RC to SC use $x^2 + y^2 + z^2 = \rho^2$, $\tan \theta = \frac{y}{x}$ and $\cos \phi = \frac{z}{\rho}$.

12. Triple integrals in Cylindrical Coordinates:
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}, \quad dV = r dz dr d\theta$$

$$\iiint_E f(x, y, z) \ dV = \iiint_E f(r \cos \theta, r \sin \theta, z) r \, dz \, dr \, d\theta$$

13. Triple integrals in Spherical Coordinates: $\begin{cases} x = (\rho \sin \phi) \cos \theta \\ y = (\rho \sin \phi) \sin \theta \end{cases}, \quad dV = \rho^2 \sin \phi \ d\rho \, d\phi \, d\theta$ $z = \rho \cos \phi$

$$\iiint_E f(x, y, z) \ dV = \iiint_E f(\rho \sin \phi \cos \theta, \ \rho \sin \phi \sin \theta, \ \rho \cos \phi) \ \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta$$

- **14.** Vector fields on \mathbb{R}^2 and \mathbb{R}^3 : $\vec{\mathbf{F}}(x,y) = \langle P(x,y), Q(x,y) \rangle$ and $\vec{\mathbf{F}}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$; $\vec{\mathbf{F}}$ is a conservative vector field if $\vec{\mathbf{F}} = \nabla f$, for some real-valued function f.
- **15.** Line integral of a function f(x,y) along C, parameterized by x=x(t), y=y(t) and $a \le t \le b$, is

$$\int_C f(x,y) \ ds = \int_a^b f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \ dt \ .$$

(independent of orientation of C, other properties and applications of line integrals of f)

Remarks:

(a) $\int_C f(x,y) ds$ is sometimes called the "line integral of f with respect to arc length"

(b)
$$\int_C f(x,y) dx = \int_a^b f(x(t), y(t)) x'(t) dt$$

(c)
$$\int_C f(x,y) dy = \int_a^b f(x(t), y(t)) y'(t) dt$$

13. Line integral of vector field $\vec{\mathbf{F}}(x,y)$ along C, parameterized by $\vec{\mathbf{r}}(t)$ and $a \leq t \leq b$, is given by

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{a}^{b} \vec{\mathbf{F}}(\vec{\mathbf{r}}(t)) \cdot \vec{\mathbf{r}}'(t) dt.$$

(depends on orientation of C, other properties and applications of line integrals of f)

14. Connection between line integral of vector fields and line integral of functions:

$$\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_C (\vec{\mathbf{F}} \cdot \vec{\mathbf{T}}) \, ds$$

where $\vec{\mathbf{T}}$ is the unit tangent vector to the curve C.

15. If
$$\vec{\mathbf{F}}(x,y) = P(x,y)\vec{\mathbf{i}} + Q(x,y)\vec{\mathbf{j}}$$
, then $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_C P(x,y) \, dx + Q(x,y) \, dy$; Work $= \int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$.

16. Fundamental Theorem of Calculus for Line Integrals: $\int_C \nabla f \cdot d\vec{\mathbf{r}} = f(\vec{\mathbf{r}}(b)) - f(\vec{\mathbf{r}}(a))$:

17. A vector field $\vec{\mathbf{F}}(x,y) = P(x,y)\vec{\mathbf{i}} + Q(x,y)\vec{\mathbf{j}}$ is conservative (i.e. $\vec{\mathbf{F}} = \nabla f$) if $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$; how to determine a potential function f if $\vec{\mathbf{F}}(\vec{\mathbf{x}}) = \nabla f(\vec{\mathbf{x}})$.